IRRITANT PHORBOL DERIVATIVES FROM FOUR JATROPHA SPECIES

W ADOLF, H J OPFERKUCH and E HECKER

Deutsches Krebsforschungszentrum, Institut für Biochemie, Im Neuenheimer Feld 280, 6900 Heidelberg, West Germany

(Revised received 16 June 1983)

Key Word Index—Jatropha curcas, J gossyptfolia, J podagrica, J multifida, Euphorbiaceae, diterpene esters, irritants, phorbol derivatives

Abstract—Four Jatropha species used in folk medicine were screened for irritant constituents. By chromatographic and countercurrent distribution procedures, highly irritant factors were isolated from each species. They represent new polyunsaturated esters of the tigliane-type diterpenoids 16-hydroxyphorbol (J. podagrica, J. multifida) and 12-deoxy-16-hydroxyphorbol (J. curcas, J. gossypifolia)

INTRODUCTION

Species of the genus Jatropha are known to be very toxic and the irritant and purgative activities of some of their seed oils are reminiscent of those shown by the toxic and irritant diterpene esters contained in the seed oils of many other Euphorbiaceae species, e.g. Croton tiglium [1] and Euphorbia lathyris [2] However, the chemical nature of the toxic principles of Jatropha species are unknown

Various plant parts of J podagrica are widely used in traditional folk medicine in West Africa [3, 4] Seeds and seed oil of J multifida and J curcas (physic nut, purge nut) are frequently used as purgatives in tropical countries [5-7] However, they may cause strong irritation and poisoning ('hell oil', 'oleum infernale', see refs [5-7]) In addition, the high toxicity of J curcas seeds to mice and goats has been demonstrated [8, 9] J gossyptfolia is often used as a tea plant in Central America and its infusion is one of the most frequently used folk remedies of Curação [6] Its use may be related to the high incidence rates of oesophageal cancer on Curação [10] Extracts of the plant have also been used to treat cancerous growth [11] and

the tumour inhibitory macrocyclic diterpene jatrophone was isolated from the roots [12] Further diterpendic constituents, which may be biogenetically related [13], were inactive as tumour inhibitors [14]

We now report the isolation and chemical characterization of irritant diterpene esters from the seed oils of the four *Jatropha* species

RESULTS AND DISCUSSION

The seed oil of each of the Jatropha species was obtained by ether extraction of the homogenized seeds. The fractionation procedure for the different seed oils was carried out as described for the seed oil of Euphorbia lathyris [2]. Each fraction obtained was monitored by the assay for irritant activity on the mouse ear [1]. As may be seen from Table 1, the seed oils were obtained in 20-40% yield and exhibited weaker irritant activity than the seed oil of E lathyris. A 10-30-fold enrichment of the biological activity was achieved by preparation of the hydrophilic fractions, representing between 3 and 6% of the oils

Table 1 Yield and irritant activity* of the seed oils obtained from four Jatropha species and of corresponding subfractions obtained during separation procedures according to ref [2]

Species	Seed oil		Hydrophilic fraction†		Neutral fraction†	
	Yield (%)	ID ²⁴ ₅₀ (μg/ear)	Yield (%)	ID ₅₀ ²⁴ (μg/ear)	Yield (%)	ID ₅₀ ²⁴ (μg/ear)
J podagrica	40	> 100	3.5	3 5	3 2	31
J multıfida	34	70	32	25	20	44
J curcas	20	25	61	18	38	15
J gossypıfolia	22	30	48	1 4	25	09
E lathyris	53	13	103	0 75	66	14

Determination of the irritant dose 50 (ID 50) according to ref [1] Standard Seed oil and corresponding fractions from Euphorbia lathyris [2]

*Yields and 10_{50}^{24} values of seed oils and fractions from *J curcas* and *J gossyptfolia* are average values of three different fractionations, the other *Jatropha* species were fractionated only once †Yields refer to seed oil = 100%

130 W Adolf et al

The corresponding hydrophobic fractions did not show any irritant activity and were discarded Acidic constituents were removed from the hydrophilic fractions by washing with sodium carbonate solution. The neutral fractions thus obtained were further fractionated, in the case of *J. podagrica* and *J. multifida*, by column chromatography and in the case of *J. curcas* and *J. gossypifolia* by multi-stage Craig distribution

The irritant fractions obtained from both J podagrica and J multifida were shown to contain TLC homogeneous material with identical R_f values. Whereas the material from J podagrica was characterized as the Jatropha factor P1, the material from J multifida was separated by multiple development on TLC into two Jatropha factors, M₁ and M₂ (see Table 2), both exhibiting spectral data similar to the mixture (The UV data were similar for all Jatropha factors or materials, typical extinction values are presented for *Jatropha* factor M_1) The NMR data of factor P_1 and of factors M_1 and M_2 were very similar They suggested the presence of polyunsaturated acid esters (6-7 double-bond equivalents) of a common phorbol derivative Indeed, the same parent alcohol moiety (identical R_f value) was obtained from the three Jatropha factors by transesterification with 01 M sodium methanolate After acetylation of the parent alcohol, a tetraacetate was obtained exhibiting spectral data identical with those of an authentic sample of 16hydroxyphorbol-12,13,16,20-tetraacetate (2, see Fig 1) 16-Hydroxyphorbol (1) is the tigliane-type parent alcohol of irritant and tumour-promoting factors from Croton flavens [15] and also of toxic constituents of Aleurites fordu [16] The exact chemical structures of the methyl esters obtained by transesterification of the mixture of M_1 and M_2 were not determined

After multi-stage Craig distribution under identical conditions of the neutral fractions of J curcas and J gossypifolia, in both cases nearly all of the irritant activity was found in corresponding fractions. According to TLC, they contained relatively uniform material They were finally purified by filtration through a small silica gel column, from both species irritant material was isolated exhibiting identical R_f values, which were, however, different from those of factors P_1 , and M_1 and M_2 Multiple development of the apparently uniform material from both Jatropha species on TLC separated them into two factors, C_1 and C_2 (J curcas), and G_1 and G_2 (J gossypifolia), respectively (see Table 2) Attempts to separate the extremely unstable factors on a preparative scale were unsuccessful The NMR, UV and mass spectra of the pairs of Jatropha factors C_1/C_2 and G_1/G_2 were very similar, indicating the presence of esters of the same phorbol derivative with polyunsaturated acid moieties

The pairs of irritant factors isolated from J curcas and J gossypifolia did not react under the transesterification conditions described for the factors from J podagrica and J multifida. When factors from J curcas and J gossypifolia were reduced with lithium aluminium hydride in diethyl ether followed by acetylation with acetic anhydride/pyridine, a product (4) (see Fig. 1) was obtained exhibiting the same R_f value and spectral data as authentic 3-deoxo-12-deoxy-3 ξ ,16-dihydroxyphorbol-3,13,16,20-tetraacetate. It is known that unsaturated 13-

Table 2 Yield, irritant activity and diterpene parents of various Jatropha factors

Jatropha species	Jatropha factors or mixtures	Yield (%)	ID ²⁴ (μg/ear)	Parent alcohol
podagrica	P ₁	0 013	0 07	16-Hydroxyphorbol
multifida	$(\mathbf{M_1} + \mathbf{M_2})$	0 011	0 05	16-Hydroxyphorbol
curcas	$(C_1 + C_2)$	0 013	0 02	12-Deoxy-16-hydroxyphorbol
gossypıfolıa	(G_1+G_2)	0 01	0 02	12-Deoxy-16-hydroxyphorbol

Standard 12-O-tetradecanoylphorbol-13-acetate (TPA), ID 50 002 µg/ear

Fig 1 Structure of 16-hydroxyphorbol (1) and its 12,13,16,20-tetraacetate (2), and of 3-deoxo-12-deoxy-3ζ,16-dihydroxyphorbol (3) and its 3,13,16,20-tetraacetate (4)

esters of 12-deoxy-16-hydroxyphorbol do not afford the parent alcohol under usual transesterification conditions [17] Thus it was concluded that the irritant principles of J curcas and J gossyptfolia represent 12-deoxy-16-hydroxyphorbol-13-acylates with highly unsaturated acid moieties. The exact chemical structure of the acid moieties was not elucidated in detail for J curcas, that of J gossyptfolia is under way

It is noteworthy that the ID₅₀ values of *Jatropha* factor P₁ and of all the mixtures of *Jatropha* factors isolated are comparable with that of 12-O-tetradecanoylphorbol-13-acetate (TPA, Table 2)

EXPERIMENTAL

Plant material Seeds of J curcas and J gossyptfolia were purchased from F Steinmetz Co, Botanical Drugs, Amsterdam Seeds of J podagrica were a gift from Prof W Rauh, Dept of Botany, University of Heidelberg Seeds of J multifida were kindly provided by Dr J F Morton, Morton Collectanea, University of Miami, Florida

General methods TLC precoated silica gel plates PF $_{254}$, CC Merck silica gel (0 05–0 2 mm) deactivated with 13 % H $_2$ O Spots on TLC were detected under UV light (254 nm) and/or by spraying with vanillin/H $_2$ SO $_4$ For methods of countercurrent distribution, see ref [1] 1 H NMR 90 MHz, CDCl $_3$ with TMS as int standard

Assays for irritant activity Irritant doses 50 (ID $^{26}_{50}$) were determined on the mouse ear 24 hr after application according to the standard procedure [1] The standard deviations, σ , were all in the range 1 16–1 32, significance level $\alpha=0.05$

Preparation of seed oils The seeds (J curcas, 5 kg, J gossyptolia, 2 kg, J multifida, 2 kg, J podagrica, 500 g) were homogenized with an electric mill and extracted exhaustively with peroxide-free Et₂O Yields of seed oils and iD₅₀ values are presented in Table 1

Fractionation procedures (for details see ref [2]) The seed oils were extracted several times with MeOH to yield inactive oily hydrophobic fractions ($ID_{50} > 100~\mu g$ /ear) and active oily hydrophilic fractions (ID_{50} and yields, see Table 1) From the latter, by extraction with 1 M Na₂CO₃ the neutral fractions were obtained (Table 1)

Factors from J multifida and J podagrica On CC with Et₂O-petrol-Me₂CO (1 1 1), TLC-uniform material was obtained from the neutral fractions of the seed oils of J podagrica and J multifida, R_f 0 1 (EtOAc-petrol, 4 1) (for yields and ID_{50}^{40} see Table 2) Spectral properties of material from J multifida MS m/z 728, 726 [M]⁺, UV $\lambda_{\text{me}}^{\text{MeOH}}$ nm 222, 244, 254, 264 5, 275, 286, ¹H NMR (90 MHz, CDCl₃, TMS) δ 7 6 (1H, m, H-1), 5 3–6 4 (15–16 olefinic H, 2 m (br) centred at 6 15 and 5 6, H-12 superimposed), 4 02 (2H, s (br), H₂-20), 3 84 (2H, s (br), H₂-16), 3 0–3 4 (5H, m), 2 5 (2H, s (br), H₂-5), 1 78 (3H, m, H₃-19), 5 23 (1H, s, OH-9, exchangeable with D₂O)

By multiple TLC the presence of two factors in J multipla was demonstrated. The separation of irritant material (40 mg) into the factors M_1 (4 mg) and M_2 (2 mg) was achieved after developing 4 precoated plates (20 × 20 cm, 0.5 mm thickness) 7 times each in EtOAc-petrol (3.1) The mass spectra and NMR spectra were identical with those described for the mixture of Jatropha factors M_1 and M_2 UV λ_{max} nm (ϵ) factor M_1 (m/z 728) 216 (24 400), 244 sh (20 700), 254 sh (27 500), 264 (37 700), 274 (44 200), 285 (32 000), 324 (420), factor M_2 216, 244 sh, 254 sh, 264, 274, 285, 324

The mixture of M_1 and M_2 was treated with 01 M NaOMe-MeOH for 1 hr After adding buffer, pH 68, and extracting with n-BuOH, the resultant compound (1, R_1 0 08 in

CH₂Cl₂-MeOH, 10 1) was acetylated (Ac₂O-pyridine) to yield 2 which was purified by TLC (Et₂O-petrol, 4 1, R_f 0 14) MS m/z 548 [M]⁺, UV $\lambda_{\rm max}^{\rm MeOH}$ nm (e) 194 (14600) and 254 nm (3000), ¹H NMR δ 7 58 (1H, s (br), H-1), 5 73 (1H, d (br), J = 6 Hz, H-7), 5 40 (1H, d, J = 10 Hz, H-12), 4 48 (2H, s (br), H₂-20), 4 27 (2H, AB, $J_{\rm AB}$ = 12 Hz, H₂-16), 3 1-3 3 (2H, m, H-8, H-10 superimposed), 2 45 (2H, s (br), H₂-5), 1 78 (3H, m, H₃-19), 0 93 (3H, d, J = 7 Hz, H₃-18), 5 4 (s, OH-9, superimposed with H₂-12), 3 92 (s, OH-4), 2 08-2 15 (12H, 4 acetates) All spectral data were identical with those of 16-hydroxyphorbol-12,13,16,20-tetraacetate (2) [15]

The factor P₁ isolated from *J podagrica* proved to be TLC-uniform after multiple development in various systems MS m/z 726 [M]⁺, UV $\lambda_{\rm max}^{\rm MeOH}$ nm 264, 275, 285, ¹H NMR δ 7 56 (1H, s (br), H-1), 5 2–6 4 (ca 16 olefinic H), 4 0 (2H, s, H₂-20), 3 8 (2H, s (br), H₂-16), 2 5 (2H, s (br), H₂-5), 1 78 (3H, m, H₃-19)

Jatropha factor P_1 (2 mg) was treated with 01 M NaOMe-MeOH By TLC, the reaction product 1 was detected 1 hr later with R_f 008 in CH_2Cl_2 -MeOH (10 1)

Factors from J curcas and J gossypifolia The neutral fractions from J curcas and J gossypifolia were each subjected to a Craig distribution in the system petrol-MeOH-H₂O (15 10 0 5, z=500, n=2160, V=13 ml/10 ml) Irritant activity was found for both species in fractions r=35-80, exhibiting in TLC one major product with R_f 0.21 (EtOAc-petrol, 2.1) and minor amounts of impurities on the base line and with higher R_f values The irritant material from both species was further purified by CC with the system above For yields and iD₅₀ values of factors isolated see Table 2

The irritant material isolated from the two *Jatropha* species could be separated analytically into two factors (factor pairs C_1/C_2 , G_1/G_2 , see Table 2) when developed 3-4 times in EtOAc-petrol (2 1) Attempts to obtain a separation on a preparative scale failed

Spectral properties of the isolated material C_1/C_2 from J curcas MS m/z 710 [M] $^+$, UV λ_{max}^{MeOH} nm 195 5, 231, 274 (sh), 280, 287 (sh), 300 (sh), 316 5, 1 H NMR δ 7 58 (1H, m, H-1), 4 5-6 5 (ca 14 olefinic H, H-7 superimposed), 4 0 (2H, s, H $_2$ -20), 3 96 (2H, AB, 16-H $_2$), 2 8-3 3 (6H, including H-8 and H-10), 2 48 (2H, s (br), H $_2$ -5), 1 78 (3H, m, 19-H $_3$), 5 27 (s, OH-9), 2 4 (s, OH-4)

Spectral data of the isolated material G_1/G_2 from J gossyptolia were identical (MS, NMR) with those of C_1/C_2 UV data showed identical λ values and similar ε values

Factors C_1/C_2 and G_1/G_2 did not react with 01 M NaOMe–MeOH, but when reduced with L_1AlH_4 – Et_2O (4 hr refluxing) a product (3) was obtained (R_f 01 in CH_2Cl_2 –MeOH, 101) After acetylation with Ac_2O –pyridine and chromatography with Et_2O –petrol (11), compound 4 (R_f 018) was isolated from both species exhibiting identical spectral data MS m/z 534 [M]+, IR $v_{\rm max}^{\rm KBr}$ cm⁻¹ 3430, 1735, 1650, UV $\lambda_{\rm max}^{\rm MeOH}$ (ε) nm 1935 (20000), 316 (100), ¹H NMR δ 588 (1H, m, H-1), 572 (1H, d (br), H-7), 552 (1H, m, H-3), 45 (2H, s, H₂-20), 407 (2H, AB, 16-H₂), 31 (1H, m, H-8), 258 (2H, AB, H₂-5), 162 (3H, m, H, 19), 495 (1H, s, OH-9), 205–220 (12H, 4 acetates) Spectral data identical with those of 3-deoxo-12-deoxy-3 ξ ,16-dihydroxy-phorbol-3,13,16,20-tetraacetate (Gschwendt, M and Hecker, E, unpublished results)

REFERENCES

- 1 Hecker, E and Schmidt, R (1974) Progr Chem Org Nat Prod 31, 377
- 2 Adolf, W and Hecker, E (1975) Z Krebsforsch 84, 325
- 3 Odebiyi, O O (1980) Planta Med 38, 144
- 4 Odebiyi, O O (1982) Planta Med 45, 138

132 W ADOLF et al

5 Kingsbury, J M (1964) Poisonous Plants of the United States and Canada Prentice-Hall New York

- 6 Morton, J F (1981) Atlas of Medicinal Plants of Middle America, Bahamas to Yucatan (Thomas, C C, ed) Springfield, Illinois
- 7 Watt, J M and Breyer-Brandwijk, M G (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa E &S Livingstone, Edinburgh
- 8 Adam, S E I (1974) Toxicology 2, 67
- 9 Adam, S E I and Magzoub, M (1975) Toxicology 4, 347
- 10 Hecker, E, Lutz, D, Weber, J, Goerttler, K and Morton, J F (1983) Proceedings of the XIIIth International Cancer Congress, 8-15 September 1982, Seattle, Washington Alan

- R Liss, New York (in press)
- 11 Hartwell, J L (1969) Lloydia 32, 153
- 12 Kupchan, S M, Sigel, C W, Matz, J M, Renauld, J A S, Haltiwanger, R C and Bryan, R F (1970) J Am Chem Soc 92, 4476
- 13 Adolf, W and Hecker, E (1977) Isr J Chem 16, 75
- 14 Purushotaman, K K, Chandrasekharan, S, Cameron, A F, Connolly, J D, Labbe, D, Maltz, A and Rycroft, D S (1979) Tetrahedron Letters 979
- 15 Weber, J and Hecker, E (1978) Experientia 34, 679
- 16 Okuda, T., Yoshida, T., Koike, S and Toh, N (1974) Chem Pharm Bull 22, 971
- 17 Gschwendt, M and Hecker, E (1973) Z Krebsforsch 80, 335